UCRL-MA-103421 Rev. 3

Security Profile Inspector
for the UNIX Operating System
(SPI/VMS)

User’'s Guide

for SPI/VMS version 2.0

Tony Bartoletti
Steve Cooper
John Fisher
Susan Taylor

February 1995

Lawrence Livermore National Laboratory

SPI is sponsored by:

US Air Force Cryptologic Support Center

US Department of Energy

US Defense Information Systems Agency

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of Californianor any of their
employees, makes any warranty, express or implied, or assumes any legal liahility or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercia products, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California and shall
not be used for advertising or product endorsement purposes.

Work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract W-7405-Eng-48.

Copyright © 1995 by the Regents of the University of California. All rights reserved.
Thiswork was produced under the sponsorship of the United States Department of
Energy. The government retains certain rights therein.

ACKNOWLEDGMENT:

The work reported in the following pages has been
sponsored by several organizations. \We appreciate
the support, advice, and technical direction of:

U. S. Department of Energy
Office of Safeguards and Security
SA-123/GTN

Washington, DC

U. S. Department of Defense
Defense Information Systems Agency
ATTN: TFE

Arlington, VA

U. S. Air Force
Cryptologic Support Center
AFCSC/SRE

San Antonio, TX

Table of Contents

TabIE Of CONTENTS......oiiieiiiee e 4
N OTUCTTION. ... sn e n e b nn e 6
TNSEAHTALTON ... bbb 7
USING SPL et b et b e e n e 8
Quick System Profile (QSP) ..o 9
SEArtiNG QSP. e 9
QS P ANAIY SIS, it 9
FIle PEMISSIONS ... 9
Password Security INSPECLON (PSI)....ccvoiiiiiiiiiieiesieseeeeee e 10
RUNNING PSl .. a 10
Command LiNE OPLiONS.uneeiie et 10
PSI ANAIY SIS it 11
(@ gF=Talo TN IS (= o (o] g (@31 N I TR 12
SAtING DT .ottt 12
Command Lin€ OPLiONS.cuvietie it 12
(O N 7 £ 13
Configuration Query Language (CQL)..c.eoui et 15
Command Lin€ OPtiONS.cuvietitt it 15
(@11 1= 15
L0 11T Y 1= £ 16
System Variables.......c.ooiuiiii i 16
Object Variables. ... 17
EVAL COMMAN. ...ttt 18
Existence Checks- Require/AIIOW/DeNycoiiiiiiiii e, 19

EXCEPL/PIODIL 19

S 070 1T 20
D N e 20
READ filename........oooiiii e 21
LT SR e 21
B 21
RECUISE. .. 22
Creating Your Own EVAL FUNCLONS.cvieiiii e 22
List EVAL Function Coding Example.......cccccooiiiiiiiiiiieiiiiiee e, 24
Predefined Check FUNCLIONS..........ccuuiiiiiiiiiiciii e 25
REPOrt GENEFrator (RG)ceeiiieieieesieee ettt s re e te e e s neeaesnnennen 28
Command Lin€ OptiONS.vveiei e 28

Parameter FilES. ..o 28

| ntroduction

Welcometo SPI/VMS 2.0. SPI is a software security package for computers running the
UNIX or VMS operating systems. Its purpose isto assist system managers and computer
security officersin insuring the security of their computer systems. SPI inspects various
aspects of the computer system and reports on potential vulnerabilities.

Computer system vulnerabilities are weaknesses in a system’ s defenses against intruders.
Examples of vulnerabilities include: improper world permissions, easy-to-guess
passwords, or accounts that no longer have users. SPI helps to detect these vulnerabilities
so that you can eliminate them.

Computer intrusions are detrimental changes to a system. SPI helps to detect these changes
by taking aninitial “snapshot” of the system configuration, and then using this as a baseline
for comparison when you need to check what €l ements have been affected by an intrusion.
Intrusions are such things as. a changed digital signature on afile that should have been left
alone, unexpectedly changed file permissions or ownerships, new or modified user
accounts, and corrupted log data.

SPI VMS contains four powerful security tools:

1) Quick System Profile - for exploring known security problems, such as incorrect
permissions on important files, or dangerous settings in configuration files.

2) Password Security Inspector - uncovers poorly choosen passwords, using a dictionary
and common permutations of user information.

3) Change Detector - maintains a database of important system file statistics, such asfile
size and the last date changed, and provides warnings when that information has been
changed.

4) Configuration Query Language - a scripting language that provides a high level method
of analyzing the target system. Each of the three tools above utilize CQL to capture
system information, and the user is encouraged to write more scripts that check for site-
independent problems.

In addition, SPI VMS provides the following for managing those tools:

1) Menu-based interface - provides an easy-to-use interface for running SPI tools.

2) Report Generator - provides user-friendly reports, generated from the data files
produced by the security tools.

SPI/VMS 2.0 is acomplete rewrite of SPI/VMS 1.0. This new verionsis directly derived
from SPI/UNIX 3.2.1, and shares most of the same code.

| nstallation

Setting up SPI VMS 2.0 requires severa steps:

1) Execute the following command to build the SPI hierarchy:

BACKUP SPI . BCK/ SAVE [SPI . . .]

where [SPI] isthe directory you wish SPI to reside in. The following directories will
now be created:

[SPI

[SPI . D. PARAMETERS. CDT]

[SPI .
[SPI .

[SPI .

[SPI .

[SPI

- E|

D. PARAMETERS. RG
D. DATABASE. PSI |

D. DATABASE. CDT]

D. CORF]
. D. RESULTS]

All executables

Location of METASPEC. CDT, for
customizing the Change Detector

Report formats for the report generators

Location of dictionaries for the Password
I nspector

Database information stored by the Change
Detector and the Password I nspector

Raw output generated by the security tools.

User-friendly output reports, generated from
the CORF output.

3) Editthe SPI DCL file[SPI . E] SPI . COM setting the logical SPI DI R so that all
directoriespoint to[SPI | (or wherever you choose SPI to reside).

Using SPI

The SPI interface itself is quite straightforward. To start it, type the following:
@5PI

The following menu will then be presented:

Quick System Profile
Password Security I nspector
Change Det ect or Snapshot
Change Det ect or

CQL Scri pt

Exi t

ot i on:

XOUOAWNPRF

When atool is executed, it will run in the background, and the user may continue, even
leaving SPI. When the tool has completed, atextual message will be sent to the screen.
Multiple tools may be run concurrently, but only one copy of each tool is allowed.

To execute atool in the background, type

SPI nn

where nn isthe menu item to execute (1-4 are valid). Thiswill execute the tool without
running the SPI interface.

After theintial execution of SPI, the following logicals will be created:
SPI $QSPRESULT QSP Reports

SPI $PSI RESULT PS| Reports

SPI $CDTRESULT CDT Reports

SPI $CQLCORF CQL CORF output

Each of the tools presented above are detailed in the following sections.

Quick System Profile (QSP)

QSP checksthe target system for security problemsthat are specificto VMS. QSPis
actually a CQL script, called QSCRI PT.

Currently, QSP islimited to checking file permissions on key configuration files, but QSP
will later be expanded to deal with more VM S-specific security problems.

Starting QSP
To run QSP, execute the SPI DCL, and choose option 1.

When QSP has finished, the report may be found in SPI $QSPRESULT, under the name
QSP{time}, where {time} isthe date and time that the report was generated.

Command Line Options

QSP contains no command line options.

QSP Analysis

QSP utilizes CQL (Configuration Query Language) to investigate known VMS security
problems. These problems are outlined below.

File Permissions
The following files should be readable only by system administrators:

SYS$SYSTEM AUTHORI ZE. EXE
SYS$SYSTEM NETUAF. DAT

SYS$SYSTEM NETPROXY. DAT
SYS$SYSTEM SYSUAF. DAT

SYS$SYSTEM FTSVQUEUE. DAT
SYS$SYSTEM FTSVACC. DAT
SYSSVANAGER: VAXNOTES$STARTUP. COM
SYSSMANAGER: LOG N. COM

The following files should be executable only by system administrators:

SYS$SYSTEM TDVSEDI T. COM
SYS$SYSTEM TVDSTRTUP. COM
SYS$SYSTEM MODPARANS. DAT
SYSSMANAGER: SYSSHUTDWN. COM
SYSSMANAGER: SYLOGQ N. COM
SYSSMANAGER: SYSTARTUP. COM
SYSSVANAGER: SYSTARTUP_V5. COM
SYSSMANAGER: LOG N. COM

SYSSVANAGER: STARTNET. COM
SYS$VANAGER: LOADNET. COM
SYS$MANAGER: RTTLCQAD. COM

10

Password Security Inspector (PSI)

The Password Security Inspector checks the password file for easily guessed
passwords.The password file contains information such as account names, passwords,
project names, etc, that usually contains information about the user. SPI checks passwords
in the password file against thisinvormation and various dictionaries, using certain
algorithmic permutations, to find passwords that are easy-to-guess or find.

PSI isthe password security inspector; it will perform a series of tests on /etc/passwd or
any other file written in the same format. psi will attempt to match the passwordsin the
tested file against one to three specified dictionaries and your account name plus, al
possible combinations of one, two, and three letter alpha and numeric passwords. psi can,
during the tests, reverse dictionary words and capitalize them. (accountname and gecos
field entries are automatically reversed and uppercased.)

Running PSI
To run PSI, execute the SPI.COM DCL, and choose option 2.

When PSI has finished, the report may be found in SPI $PSI RESUL T, under the name
PSI{time}, where {time} isthe date and time that the report was generated.

Without modification, PSI runs with no special options (e.g, no dictionaries). To add

options, edit the SPAVWNSPI . COMDCL, where PSI is executed, using the following
options:

Command Line Options

psi [-h][-f][-r] [-d dictionary(s)]
[-a al pha_num [-] logfile][-0 agelimt]

-h display command line usage

-f Print the bad passwords when found.

-r Reverse the dictionary test words (e.g. "secret” becomes
"terces").

-d dictionary(s) Listof dictionary files, each file consisting of one testword per
line.

-a al pha_num Extent of alphaand numeric test words to generate.

"alpha_num" must be either 1, 2, or 3.

-1 logfile Lodfile to use and update. When alogfileis specified, only
those accounts whose passwords have changed from the logfile
record will be tested, and the logfile will be updated to reflect the
current entries. Also, new and deleted accounts will be
reported.

11

If no logfileis given, then all account names will be tested, and
no subsequent logfile will be produced.

-0 agelimt Report accounts whose password has not changed in "agelimit”
days. Thisoption requiresthe"-I logfile" option. psi outputsits

results to standard output. Y ou may also configure and run psi
through the spi menu package.

PSI Analysis

PSI checks for the following types of passwords:

* empty passwords

e 1-, 2-, or 3-letter combinations of aphabetic and numeric permutations
» variations of the user’s name or information fields.

» common English words, local jargon, and trivial words (e.g., names of charactersin
books or names of cars)

12

Change Detector (CDT)

CDT isused to track changes to important system files, user accounts, and related system
security attributes. The purpose is both to detect intrusions and to warn when the attributes
of system-critical files may have been inadvertently and detrimentally modified during
routine administrative actions.

The SPI Change Detector Tool (CDT) is used to track suspicious changes to important
system files, user/group accounts, and related system security attributes. It isdesigned to
allow flexible specification of those items warranting change detection. The cdt utility is
used both to conduct change detection, and to update the baseline (cdt database) of
previously accepted system values with new values (as systems are upgraded, users and
critical files are added or deleted, etc).

Starting CDT

CDT works by saving a“snapshot” of the system in a database, and alerting the system
administrator when the the system has changed.

The criteriafor the snapshot liesin SPI $CDTPARANMS. See that document for information
on how to modify the system snapshot.

To create a system snapshot, execute the SPI . COMDCL, and choose option 3. No report
is produced, but a database will be created called SPI $CDTDATA: DATABASE. .

To see how the system has changed since the snapshot, execute theSPI . COMDCL, and
choose option 4.

When CDT has finished, the report may be found inSPI $CDTRESUL T, under the name
PSI {time}, where {time} isthe date and time that the report was generated.

Command Line Options

cdt [-h] | [-u] -d database ptr [-p paranfile | -s snapshot]

-d dat abase file representing the active cdt database (mandatory - see FILES
below)

-h display command line usage

-p paranfile file specifying the items for which change detection isto be

reported, or (if -u option given) the items which will be gathered
to popul ate the baseline cdt database. The paramfile isused by
cdt to automatically generate a snapshot of current system
values. If [-p paramfile] is omitted, then [-s snapshot] is
required. (see FILES below for detailed paramfile format)

-S snapshot file containing current values of user, group and file lists and
their attributes. The values contained will be compared against
corresponding data in the cdt database so that changes can be

13

reported, or (if -u option given) these new values will be used to
populate (update) the cdt database. If [-s snapshot] is omitted,
then [-p paramfil€] is required to produce the needed snapshot.
(see FILES below)

-u Update Database (no change detection) -- Create revised CDT
database. All recordsin the database file whose sixth field is
"CDT" are deleted, and replaced by new entries. The new
entries are generated either from a supplied "snapshot” file, or
from a snapshot produced by a call to the SPI Query Language
utility (sql) parametrized by a supplied "paramfile’. No change
detection is conducted.

With any update of a CDT database, the previous version is
saved in the same directory with a name of the form

"sdb YYYYMMDD.HHMMSS', where the date.timestamp will
be the latest creation or modification time.

NOTE: A change-detection report will only beissued if the -u option is omitted.

CDT Analysis
A variety of user and file parameters may be stored in CDT’ s database. These parameters
are stored in METASPEC.CDT. Thisfileis used to specify which files, users, and groups
are to be part of the change detection baseline, and for each, which attributes are to be
considered significant for change detection reporting. All lines (other than #comment lines)
have the form:

<EntryType>:<WarnSpec>:<MetaSpec>[:<ExceptionSpec>]

Example -- to do change detection of al filesin /etc for changesin group_id, linkcount,
permissions, size, user_id, and xsum:

FI LE: gl psux:/etc/*
In the above example, to exclude the file /etc/wtmp,

FI LE: gl psux:/etc/*:/etc/wnp
Valid Entry_Typesare: SYSTEM, HOST, FILE, USER, GROUP
Vaid FILE WarnSpecs are: abcdgilmpstux

(a)access time (c)change_time (dymgordevice (g)group _id
(inodenumber (Dlinkcount (m)modify_time (p)permissions
(9)size (Wuser_id (t)xsum_length (xX)xsum

NOTE: to detect changesin file CONTENTS, (x)xsum must be included. The following
specia FILE WarnSpecs are allowed:

use (A) for acdgilmpstux (Report ALL Changes)

use (L) for gilpu (useful for logfiles and devices)

14

use (S) for cglpsux (useful STANDARD for most other files)
use (X) for x (XSUM -- crypto checksum only)

Y ou may also use combinations like S+mt and A-bdx, A-L, etc.

Vaid USER Warnspecs are:

(p)password (u)user_id (g)group_id (i)info_field
(Dlogin_dir (s)commandshell

Vaid GROUP WarnSpecs are:

(g)group_id (m)memberlist

15

Configuration Query Language

(CQL)

The Configuration Query Language (CQL) is used to detect bad system configuration
practices (such as bad permissions for files, or the presence of bad service configurations
such as for anonymous ftp). CQL is alanguage by which one can specify which bad
configuration practices one wants to check for.

A very useful set of generic practicesto test for is available by running the QSP (Quick
System Profile) tool. To create a series of checks specific to the needs of your system, a
custom CQL script may be written.

The SPI Configuration Query Language is designed to alow users an easy way to specify
and test for configuration practices or policies specific to their systems. As mentioned, the
QSP tool isessentialy a CQL script. This default set of testsis very good, however if you
would like to tailor this set to your system or write your own, feel free to do so.

Essentially, the CQL language allows you to run a series of configuration tests over sets of
files, users, or groups. The tests can include checks for standard information (afile's
permission or owner, a user’s group, a group’s members, etc), and predefined functions.
DCL scripts may be incorporated as needed, and C functions may be incorporated into the
language for more sophisticated tasks.

Command Line Options

cql [-h] -i filelist [-your_var [val ue]]
-h display command line usage
-i filelist execute the scriptslisted in filelist

All - options (except -i, -h) to cgl will be treated as the name of an execute line variable.
This variable has the value "on", unless avalue follows the option. In the query script,
you can test if an execute line variable was not present by testing if itsvalueis "off".

Queries

The basic construct of aquery isasfollows: for agiven list of files, users, or groups,
perform a set of security violation tests.

Any item (file, user, group) which passed any of the security testsis then reported. The
reported information can be either the list of all passing items (keyword WHICH), or a
separate report for each item and why it failed (keyword STATUS).

The following examplesillustrate this. The first example testsif either of the files

[FRANK] LOGd N. COM and [TED] LOG N. COMare world writable. If the test passes,
then the current permissionsis reported. The second example reports which users have bad
passwords.

16

17

STATUS FI LES={‘ [FRANK] LOG N. COM * [TED] LOG N. COM

PERM = w_w
}

VWH CH USERS=ALL
EVAL(chk_passwd()) =bad

Query Tests

The set of tests executed for a query is one or more simple, compound, or recursive tests.
A smpletest is of theform

guantity = value
guantity !=value
where the quantity is one of the following:
system variable (i.e. osnane=VN5)
object variable (i.e. file permission, group number)
execute line variable
EVAL(“user progrant) (more fully explained later)

EVAL(user _subroutine())

and value may be alist. If more than one value is given, then the list must be enclosed by
{}’s. For example:

OMER={ badl bad2}
GROUP! ={ wheel ot her}

Compound tests can include any combination of the above quantities. For example:
systenmrvns & EVAL(“vns_security_script”)!=0

The above would execute a DCL script called vms_security script and test its exit code
against 0. Although, a better way to do the above would be to use an IF command.

| F (system=VM5) EVAL(“vns_security _script”)!=0

System Variables

System variables allow the user to tailor his checks for one or more systems, thus alowing
him to use the same query script for multiple operating systems or architectures.

The following system variable are available:

osname
osnum

mach

hostname

Object Variables

operating system name (VMS)
operating system number (6.1)
machine architecture (VAX 8650)

name of host machine

Object variables are pieces of information about afile, user, or group such asthefile
owner, or the users belonging to a group. Y ou can use this information to determine if an
object is not configured as it should be. For example, afile which should be owned by the
system administrator, but is not.

The following variables are available. Examples of their use will be given later.

File Variables

acCess

group
grpnum

length

name

owner
ownnum

path

perm

type

Xsum

User Variables
group

grpnum
homedir

usernum

time file was late created (format yymmdd.hhmm e.g.
940223.1416)

name of the group owning thefile

number of the group owning the file

length of thefile (in bytes)

name of the file (not including its path)

name of the user owning thefile

number of the user owning the file

directory wherefileislocated

access permissions of the file

type of the file. For VMS, this might be “file’ or “directory”

checksum of thefile

name of the primary group the user belongs to
number of the primary group the user belongs to
the user’ s home directory

number of the user

Group Variables

grpnum number of the group
user names of al the users belonging to this group
usernum numbers of all the users belonging to this group

Global Variables (same for user, group, and file)

item name of thisitem (i.e., filename, username, or group name)

generator same as item, unless the file/user/group name was created viaan
EVAL command, in which case, the name input to the EVAL
subroutineis returned. More about his later.

Compound Information

fstat File status information. Thisis acompound quantity and can be
reported to the output for future evaluation. However fstat
information can not be used in atest.

fstatx Checksum plus file status information. This is a compound quantity
and can be reported to the output for future evaluation. However
fstatx information can not be used in atest.

userentry User status information. Thisis a compound quantity and can be
reported to the output for future evaluation. However userentry
information can not be used in atest.

grpentry Group status infromation. Thisis acompound quantity and can be
reported to the output for future evaluation. However grpentry
information can not be used in atest.

EVAL Command

The EVAL command allows a user to perform functionality not directly supported by the
CQL language. A predefined set of such routines are supplied, but a user can write his
own routines. These routines expect as input a name and a string argument, and can return
acomment, warning level, and identifier, in addition to the string value of the EVAL call.
Note: the value of an EVAL program is the exit code resulting from its execution.

The EVAL command can be used in severa different ways. The EVAL syntax is described
below, and examples of each possible EVAL format follow this description.

You can use EVAL to call asubroutine or to execute a program. For the subroutine case,
the first argument to EVAL is the subroutine name to execute along with a parenthesized list
of zero or more blank delimited arguments. If asecond argument is present, then the
subroutineis called once with each item in the given list. The EVAL command for
programs takes one argument, the execute line.

Suppose function get_paths() returnsthe list of file names found in a given ascii file.
Then, Example 1, below will check the owner of al thefileslisted in LOGIN.COM and

19

20

will report those files which are not owned by root. Fileslisted in [FRED]LOGIN.COM,
etc. are aways executed upon start up, and thus are susceptible to trojan attack and thus
should have proper owner, permissions, etc.

STATUS FI LES=
EVAL(get paths(), {'[FRED LOd N. COW)
{ O\NER! =r oot }

Existence Checks- Require/Allow/Deny

When running the query tests over alist of objects, you need to first consider whether that
object exists. By default, any non-existing objects areignored. However, their may be
cases when you want to ensure that a given file/user/group is present (and be notified if it is
not). Similarly you may want to be notified if an object does exist. This can be done by
appending the word REQUIRE, ALLOW, or DENY behind the WHICH or STATUS
keyword of the query.

The following example checks the owner of fileSYS$SYSTEM SYSUAF. DAT if it exists,
and reports an error if the password file does not exist.

STATUS REQUI RE FI LES=' SYS$SYSTEM SYSUAF. DAT
{ OWNER! =r oot }

The password file needs to be present (example above), but the file
SYS$SYSTEM SYSUAF. DAT (example below) does not haveto be. Thus, the next
example uses the keyword ALLOW (or no keyword).

STATUS ALLOW FI LES=" SYS$SYSTEM SYSUAF. DAT { OMNNER! =r oot }
STATUS FlI LES=" SYS$SYSTEM SYSUAF. DAT { OMER! =r oot}

Except/Probit

Most security policies contain at least afew exceptions. To accommodate this, theCQL
language alows you to ignore a specific query item (no testing) or to report the existence of
theitem asan error

The following example prevents users other than root from having a .rhostsfile. Any
violation of this policy will be reported.

DENY STATUS Fl LES=~/.rhosts EXCEPT=/.rhosts

The next example performs two functions. It first finds the paths defined in the .cshrc file
and reportsif "." ispresent. Second, for each non-"." path found, it checksif it has
world-writable permissions .

STATUS FI LES= EVAL(get _paths(), ~/.cshrc)

PRCH Bl T="."
{ PERMEwW w }

Comments, Ids, Warning Levels

21

Comments, identifiers, and warning levels can be attached to the list of files/users/groups
being queried and to the tests being performed. Identifiers can help other toolsto
distinguish the output from multiple requests. Comments are useful for printing more
understandable output reports. Warning levels indicate the severity of the security violation
reported (the larger the number, the more severe the problem).

Any passed vulnerability test reports any comment, id, and/or warning level attached to that
test. On the other hand, failure of existence tests due to REQUIRE, DENY, PROHIBIT
will report any comment, id, and/or warning level attached to the object (file, group, user)
list.

STATUS FI LES= EVAL(get _pat hs(),’[000000...]LOA N CoM
PROH BI T="." WARN=1
COWENT=". shoul d not be in search path"

{ PERMVEW w WARN=2 | D=w _w path
COWENT={"worl d-witable file accessed
in " CGENERATOR}

In the above example, if "." ispresent in the list, then the warning level is 1, but if any file
inthelistisworld Writeable then the warning level is 2.

Note: in the above comment, GENERATOR will expand to the name of the appropriate
LOGIN.COM file. For example, if [FRED]LOGIN.COM reads the file /home/me/junk
and thisjunk file is world writeable, then the resulting comment expands to "world-
writeable file accessed in[FRED] LOG N. COM.

Reports

The REPORT commands (as shown below) allow you to report individual dataitemsor a
list without having to judgeit, and are used to gather information which will be analyzed
outside of CQL.

list
list

REPORT DATA
REPORT LI ST

The following example reports the file status (inode) and checksum information for thefile
[FRED]LOGIN.COM.

STATUS FILES = { ‘[FRED|LOG N. COM }
{ REPORT DATA= ESTATX }

The next example makes one report entry containing all the names of "bad users accounts®
(as defined by subroutine bad_users).

REPORT LI ST = EVAL(bad_users())

Define

22

The DEFINE command associates a nameto alist so that it can be used later. To usethis
list, preface the name of the list with @.

The following will report if the files under [FRED1] and [FREDZ2] are not owned by root.

DEFINE fred= {‘[fredl...]*.* ‘[fred2...]*.*}
STATUS FI LES=@otfile { OMER != root}

READ filename

The READ command allows you to read additional files. This command can even be
present within an IF/ELSE command. The filename given can have afully specified path
or be relative to current working directory. It can aso be relative to the repository of pre-
existing CQL scripts.

|f/Else

The IF/EL SE command allows you to conditionally execute other commands (such as
DEFINE or READ) or query tests. If theIF or EL SE body consists of more than 1
statement, then the body must be bracketed by { }'s. For example:

| F (syst enmruni x)
READ / usr/ | ocal / bi n/ cql uni x1
DEFI NE sysfile = {/.cshrc /.| ogin}

ELSE
DEFI NE sysfile = { }

STATUS FI LES=@ysfile
{PERM = w w
| F (groupopt =on) PERM =g w
}

The above example checksiif the systemisa Unix system. If it is, then aspeciadl file of
Unix checksisread and thelistsysfi | e isdefined. If the system isnot Unix, then a
different definition of listsysfi | e isgiven.

The second | F statement operates on aquery test. A check for group writability is
performed only if the execute line variable groupopt is "on".

Lists

The Configuration Query Language isalist based language. A list can appear within a
query (i.e., the list to run the tests over) and also within the query tests (i.e, testing if a
quantity isone of alist of elements --- e.g., GROUP={whesel other}).

A list is one or more of the following components (if 2 or more items are present then the
list must be bracketed by { }'s).

name
filename

SCAN filename

A filename

"quoted string”

@ name (reference an already DEFINE list)
integer

EVAL command
RECURSE command

A nameis an alphanumeric (and can include object variable names like OWNER, in which
case the value of the variablesis substituted for its name).

A string is quoted with the double quote mark ().

“w n

A filename beginswith “™”.
@ nameisanamed list defined by the DEFINE command.

The keyword SCAN in front of afilename expands to every file name (but no directory
names) recursively found starting from the given file name.

Recurse

The RECURSE command, which is of the form RECURSE(query), allows you to
perform a query and to create alist containing the names of those items with security
violations. Thislist can be saved in a DEFINE statement or it can be used immediately.

If subroutine passwd_chk returns the names of user accounts with bad password, then the
following example creates alist of bad user accounts.

DEFI NE badusers = RECURSE(STATUS USERS=ALL
{EVAL(passwd_chk()) =bad})

A dight variation on the aboveisto convert the list of bad user accountsinto alist of bad
group accounts as follows.

DEFI NE badgr ps = RECURSE(GROUP(STATUS
USERS=ALL
{EVAL(passwd_chk())=bad}))

Y ou can then use the above list in another query. The following example checksif any

* k%

user's.login and .cshrc files are writeable by any of the groupsin list badgrps

STATUS FI LES={~/.login ~/.cshrc}
{ PERVFg_ w & GROUP=@adgr ps}

Creating Your Own EVAL Functions

*kk

Note: you could replace @badgrps in the above example with its definition, i.e.
RECURSE(GROUP(...).

23

24

In addition to the predefined EV AL functions, you can write your own EVAL functions.
To use your own function, you must declare these functions in the cqgl source code. To do
this, you must modify file cglsrc/usersubs.c by adding two lines to function
declare_usersubs().

Thefirst line isthe declaration of the function, i.e.

char *nyfunc();
where myfunc is the name of your function.

The second line adds the functions into cql's lookup tables by calling subroutine setfunc()
asfollows:

set func(" nyfunc", nyfunc);

where the first argument is a string containing the name of the function, and the second
argument is the function itself.

Once you finish modifying function declare_usersubs(), you then need to write your EVAL
function. Thisfunction should also bein file cglsrc/usersubs.c. The interfaceto this
function will be described shortly. Once all the above is done, then you need to recompile
cqgl. The cql tool will now recognize and be able to execute your function upon regquest.
The argumentsto an EVAL function are asfollows:

eval func (nanel, argsl, args2, nane2, coment, eid, warn
errstr)

Theinput arguments are

namel: (char *) name of object to ook at

argsl: (char *) string containing arguments (supplied in the EVAL call
in the script)

args2: (char *) string containing default arguments (supplied at the cql

execute line using the -t option)

name2: (char *) name of object to look at

Output arguments are

comment: (char **) array of strings describing security problems found. If
*comment is not NULL, then the final string in the array must
endinanextra\O'. For example: *comment="Bad
permission\0\0".

ed: (char **) identifying string used when grouping the found
security problemsinto afinal report. If no eid valueis returned
for aproblem finding EVAL function, then any problems found

25

would be grouped under the name of the EVAL function and its
argsl and args2 values.

warn: (int *) integer value denoting severity of the problem found

errstr: (char **) *errstr should be NULL, unless bad arguments to the
function are used. In which case, set *errstr to awarning
message, and a cql language syntax error will eventually be
issued.

Returned valueis

(char *) the value of the EVAL functionisalist of O or more
blank delimited items -- such as names, numbers, etc. For
example, most of the predefined EVAL functions either return a
list of file names or the string "good" or "bad".

There are two name input arguments to the EVAL function. Usually only one of these two
argumentsis used and the other isa dummy. These names arguments correspond to the
two main types of EVAL commands, asillustrated below.

STATUS FI LES=EVAL(nyfunc(),
{*[FRED] LOA N. COM ‘ [FRED] SPECI AL. COVM
{ sone tests }

and

STATUS FI LES={ SYS$SYSTEM SYSUAF. DAT
" SYS$SYSTEM PARANS. DAT}
{ EVAL(newf unc()) =bad}

Thefirst example above, illustrates what | have previously referred to as alist function.
The function myfunc() will be called twice, first with argument name2 set to
[FRED]LOGIN.COM and then with name2 set is [FRED]SPECIAL.COM. Argument
namel is a dummy argument in this case.

The second example above illustrates a check function (i.e. checking if some security
violation is present). The function newfunc() will be called twice. Once with argument
namel set to SY S$SY STEM:SY SUAF.DAT and once with namel set to

SY SBSY STEM:PARAMS.DAT.

Coding examplesfollow for list EVAL functions and check EVAL functions.

List EVAL Function Coding Example

The value returned by a predefine list function isalist of other objects (files, users,
groups). Since no evaluation is done, these routines generate no comments, warning
levels, or identifiers.

char *listfunc (dummy, argsl, args2, nane, conmment,
eid, warn, errstr)

char *result, *newnane;
char |ine[1024];
line[0]="\0";

/* parse argsl and args2 for all values they */
/* may contain -- argunent values will be blank */
/[* delimted i.e. argsl="-s 1 -x" */]

/* if (argsl contains an unknown option) goto bad */
/* NOTE: conment, eid, and warn are not set/used */
/*NOTE: nanme may refer to a non-exi stent object*/
fid = fopen(nane, "r")

if (fid==NULL) return(NULL);

while (fgets(line, 1024, fid) !'= NULL)

{ newnane = process_line(line);
strcat(line," ");
[

strcat (line, newharre);
resul t=mal | oc(strlen(line)+l);
strcpy(result, line);
return(result); /*return dynam c not static menory*/
bad:

*errstr=mal | oc(13);
strcpy(*errstr, "Bad options");
return(NULL) ;

Predefined Check Functions

The value returned by a predefine check function is an evaluation of the object (file, user,
group) being checked. Usually this evaluation is either "bad" or "good", but sometimes it
may be alist of the bad items found. If abad state isfound, a predefined check function
generates one or more comments and often generates identifiers.

As previously mentioned, comments are returned as an array of strings. To help manage
this, three comment routines are provided. They are

char * comadd(string, delimter, newstring)

where newstring is appended to the end of string, and the character delimiter is then added
to the end of this.

To trandate concatenated strings into an array of strings, call
void comarry(string, delimter)

Thisroutine will turn all characters matching character delimiter into \O'. Call thisstring
once when you are all done concatting your comments together. Make sure argument

26

27

delimiter is not a character which naturally occursin your comments. The delimiter
character in com_arry should match the delimiter character in com_add.

There may be times when you want to use the incoming value of * comment and concat to

this. However, thisincoming value would be an array of strings, but com_add() expects
just asingle string. To trandate from an array of stringsinto a string, call

void comunarry(string, delimter)
where the arguments to com_unarry are the same as the arguments to com_arry.

Given the above subroutine definitions, a coding example of acheck EVAL functionisas
follows:

char *checkfunc (name, argsl, args2, dunmy, conmment,
eid, warn, errstr)

char *result, *newnane,;

char |ine[1024];

line[0]="\0";

/* parse argsl and args2 for all values they */

/* may contain -- argunent values will be blank */
/[* delimted i.e. argsl="-s 1 -x" */]

/* if (argsl contains an unknown option) goto bad */

resul t =mal | oc(15);
strcpy(result, "good");

*eid = mall oc(25);
strcpy(*eid, "configuration test");

comunarry(*coment, '$');

/[*NOTE: cqgl ensures that nane refers to an existing */

/* object. If not, then the EVAL function is not */
/* called. This is different than for list EVAL calls
*/

fid = fopen(nane, "r")
if (fid==NULL) go to bad;

while (fgets(line, 1024, fid) !'= NULL)
{ if (is_bad linel(line))
{ *coment =
com add(*comment, '$', "bad type 1");
strcpy(result, "bad");

else if (is_bad line2(line))
{ *coment =
com add(*comment, '$', "bad type 2");
strcpy(result, "bad");

com arry(*conment,
return(result);

bad:

"$);

*errstr=mal | oc(13);

strcpy(*errstr,

"Bad options");

comarry(*coment, '$');

return(NULL) ;

28

Report Generator (RG)

The SPI Report Generator is used to convert "CORF" (Common Output Report Format)
filesinto variably-formatted final reports. A corresponding parameter file must be supplied
to direct the re-formatting. A single-character field delimiter for the given datafile must be
supplied. Dataisin CORF form if it is ASCII text, newline-delimited records comprised of
"delimiter”"-delimited fields, where delimiter isa single ASCII character.

Command Line Options

rg [-h] datafile paraneterfile [-d<deliniter>]

-h display command line usage (SYNOPSIS)

-d<ddimiter> delimiter isasingle ASCII character representing the primary field
delimiter for the supplied datafile. If no delimiter is supplied, colon
" is assumed.

datefile Thisfile contains the data to be formatted. The data must consist of

newline-delimited records with fields delimited by a single delimiter
character. The records may be considered to have a common part
and avariant part. The common part is comprised of those fields
representing meaningful attributes across al records in the datéfile,
and are thus candidates upon which to sort/section the report, if
desired. (see SORT specification in the parameterfile discription.)

parameterfile Thisfile directs the datafil e reformatting.

Parameter Files

Lines beginning with '# or whitespace are treated as comments (ignored.) All other lines
must begin with one of

TITLE SUBTITLE FIELD SORT SUBSORT OMIT PUT_ORDER LABEL
RESECTION

Of these, FIELD SORT SUBSORT OMIT PUT_ORDER and LABEL specify formatting
which will be applied to ALL entriesin the datafile, with the exception of entriesthat are
temporarily put aside by the OMIT specifications. The specified formatting remainsin
force until aline beginning with the keyword RESECTION is encountered, at which point
any OMIT-ed datafile entries are regjoined with al other datafile entries, and a new round of
formatting may be specified.

With each round of formatting, the recursive SORT and SUBSORT specifications will be
applied to al (non OMIT-ed) datefile entries. The SORT specifications alow the remaining
datafile entries to be recursively sorted and sectioned on one or more given sortfields,
dividing the entries into nested subsets. The innermost subsets will contain identical values
for the selected sortfields. A degree of variable formatting within each round is then

29

provided by the PUT_ORDER and LABEL specifications. Each of these allow
conditioning on the values of the sortfields, and provide variance in the fields to be output,
the field order, and the labeling of column headers, as appropriate for each of the innermost
data subsets. The SUBSORT specification allows an additional recursive sort to take place
across all subsets, but the entries are smply sorted (not sectioned,) and the field(s) upon
which the SUBSORT takes place are not considered as sortfields for the purposes of
conditioning.

Below are details for each of the format specifications.

TITLE SECTION: Thisistypicaly asinglelineindicating a desired report title. Thetitle
specified will be repeated automatically at each RESECTION. Theformat is

TlI TLE: <Your Title Goes Here>\\n\\n

Example,
TI TLE: ********* The V.|.P. Report ******xx*x**\\n\\n

SUBTITLE SECTION: Thisistypically asingle lineindicating a desired report subtitle
(typically varying across RESECTIONS). Theformat is

SUBTI TLE: <Your Subtitle Goes Here>\\n\\n

FIELD SECTION: This section defines FIELDNAMES for sdected fields in the datefile.
FIELD lines have the format

FI ELD: <fi el dnunber >: <f i el dname>[: <pri nt f or nat >]

The given <fieldname> is used as a token to identify selected datafile fields for operations
described in the remaining sections. The <printformat> specification is only used if the
given field is among those selected to section the output report (see SORT SECTION.)
Not all of the datafile's fields need to have defined fieldnames.

For example, somefieldsin SY S$SY STEM:SY SUAF.DAT might be specified by

FI ELD: 1: Account Nane: --- The % Account ---\\n\\n
FI ELD: 3: UserI D
FI ELD: 4: G oupl D

SORT SECTION: This section defines the named field(s) whose values will be used to
"section” the formatted report. Each line hasthe form

SORT: <sort _| evel >: <fi el dnane>[: <gr oupi ng. . . >]

NOTE: A SORT assignment should only be made to a subset of those fields which
represent meaningful attributes across ALL data record instances.

The <sort_level> must beone of { 1,2,3,...9 }, begin with 1, and increase by 1 for each
additional SORT specification. To continue with the SY S$SY STEM:SY SUAF.DAT
example, if you wanted to group the entries according to the user's group 1D, you would

specify

31

SORT: 1: G oupl D
Each section will be identified by the section title. 1f you were careful to supply a

<printformat> for GrouplD in the FIELD definition, the current Groupl D value would be
used to substitute for the '%s' in the <printformat>, and the title would look like

"ExE @ oupl D = xxx Fr*E
otherwise it will simply state
"Section = xxx:"

If you want to further divide each of these sectionsinto subsections, according to the value
of (say) the user's GrouplD, you would use

SORT:1:GrouplD
SORT:2:UserID

SUBSORT SECTION: This section defines the named field(s) whose values will be use
to further recursively sort the output lines. Each specification has the form

SUBSCORT: <sort _| evel >: <fi el dname>[: <gr oupi ng. . . >]

NOTE: A SORT assignment should only be made to a subset of those fields which
represent meaningful attributes across ALL data record instances.

The <sort_level> must beone of { 1,2,3,...9 }, begin with 1, and increase by 1 for each
additional SUBSORT specification. See SORT SECTION (above) for a description of the
optional 'grouping'.

OMIT SECTION: All recordswith aselected value in asingle conditioning field can be
temporarily set asde. The OMIT specificationis

OM T: <fi el dnanme><r el ati on><val ue>

where 'relation’ may be any one of { =, <, >, <=, >=, I=}. Therecords set aside are not
available for formatting or output until a RESECTION occurs.

PUT_ORDER SECTION: For each section[subsection,...] of the report, those records of
the datafile which meet the criteriafor being in that part of the report are now to be printed,
each oneto aline. Here, for each such section, you may specify which record fields are to
be output, and in what order. The format of the PUT_ORDER specification is

PUT_CORDER <fi el dnun{s),...]> <condition(s),...]>

where fieldnums are the field numbers of fields to be reported, and conditions have the
form <fieldname><relation><value>.

NOTE: thefieldnames referenced in the above conditions are restricted to those fields for
which sort/sectioning has been specified.

LABEL SECTION: Inafashion similar to the PUT _ORDER section described above, one
can specify individualized column labels based upon the current section of the report. The
format is

LABEL: <fi el dnun®: <l abel >: <f or mat >: <condi tion(s),...>

NOTE: The <format> (field width, left/right justify, etc) is applied not only to the column
label, but also to al datain that column.

As an example, assume a datafile contained facts about files, users, and groups. Assume
that field number 5 (say it has been given the defined fieldname TY PE) indicated this
division by thefield values FILE, USER, and GROUP. Assume also that field number 7
holds the name of the listed files (or users, etc.) If you have not specified a sort/sectioning
upon the TY PE field, then files, users and groups will be mixed together, and the best |abel
you could supply for field 7 might be "Subject_ Name". I.e,,

LABEL: 7: Subj ect _Nane: % 20s :

If, however, you had specified (at some level) a sort/sectioning upon field 5 (the TY PE
field), then the entries for fileswill be listed together in one section, entries for users listed
in another, etc. It would then make more sense to specify the label(s) for field 7 by

LABEL: 7: Fi | e_Nane: % 20s : TYPE=FI LE
LABEL: 7: User _Nane: % 20s : TYPE=USER
LABEL: 7: G oup_Nane: % 20s : TYPE=GROUP
LABEL: 7: Subj ect _Nane: % 20s :

Note that you may still leave an entry for "Subject Name" with no given conditions. This
specification will be picked up in the event that either TY PE isnot one of FILE, USER, or
GROUP, or in the event that you failed to specify a sort/sectioning upon the TY PE field.
Note aso the format "%-20s". This sets aside 20 characters for the item name, |eft
justified. The blank space before the next ;' forces at |east one space after the 20, so in the
event that the data runs to more that 19 characters, a blank space still separates that entry
from subsequent data fields.

32

Technical Information Department = Lawrence Livermore National Laboratory
University of California < Livermore, California 94551

